资源类型

期刊论文 329

会议视频 3

年份

2023 37

2022 39

2021 31

2020 31

2019 20

2018 22

2017 18

2016 13

2015 18

2014 12

2013 14

2012 10

2011 9

2010 6

2009 9

2008 7

2007 15

2006 1

2005 2

2004 2

展开 ︾

关键词

二氧化碳 2

固体氧化物燃料电池 2

带传动 2

显微硬度 2

有色金属工业 2

重金属 2

重金属废水 2

2035 1

Deep metal mining 1

EDI 1

Mitigation 1

Monitoring 1

PEDOT:PSS 1

Rockburst 1

TORCH 1

Warning 1

ZEBRA 电池 1

cellular automaton模型 1

三峡工程 1

展开 ︾

检索范围:

排序: 展示方式:

Self-assembly of metal-cholesterol oxidase hybrid nanostructures and application in bioconversion of

Yu Xin, Qiuyue Gao, Yu Gu, Mengyao Hao, Guangming Fan, Liang Zhang

《化学科学与工程前沿(英文)》 2021年 第15卷 第3期   页码 615-629 doi: 10.1007/s11705-020-1989-7

摘要: A cholesterol oxidase (COD) was hybridized with Ca , Zn , Al , Fe and Mn . After precipitation with PO at 4 °C for 72 h, the resulting pellets were freeze-dried. In scanning electron microscopy assays, the metal-COD complexes revealed flower-like or granular structures after hybridization. Fourier transform infrared spectroscopy assay revealed the characteristic peaks of both the enzyme and metal materials. X-ray diffraction analysis indicated that COD was encapsulated in CaHPO ·2H O-, Zn (PO ) ·4H O-, AlPO -, FeP - and Mn (PO ) ·3H O-based nanostructures, respectively. Differential scanning calorimetry assay indicated significant increases in thermo-denaturation temperatures from 60.5 °C to 167.02 °C, 167.02 °C, 137.70 °C, 172.85 °C and 160.99 °C, respectively. Using steroid derivatives as substrates, this enzyme could convert cholesterol, pregnenolone, dehydroepiandrosterone, ergosterol, -sitosterol and stigmasterol to related single products. Hybridization in metal-based nanostructures could significantly enhance the initial conversion ratio and reaction stability of the enzyme. In addition, substrate selectivity could be affected by various metal materials. Briefly, using Ca , Zn , Al , Fe and Mn as hybrid raw materials could help to encapsulate COD in related metal-enzyme nanostructures, and could help to promote the stability and tolerant properties of the enzyme, while also enhancing its catalytic characteristics.

关键词: cholesterol oxidase     metal-enzyme hybridization     nanostructures     sterol derivatives     bioconversion    

Diffusion process in enzymemetal hybrid catalysts

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 921-929 doi: 10.1007/s11705-022-2144-4

摘要: Enzyme–metal hybrid catalysts bridge the gap between enzymatic and heterogeneous catalysis, which is significant for expanding biocatalysis to a broader scope. Previous studies have demonstrated that the enzyme–metal hybrid catalysts exhibited considerably higher catalytic efficiency in cascade reactions, compared with that of the combination of separated enzyme and metal catalysts. However, the precise mechanism of this phenomenon remains unclear. Here, we investigated the diffusion process in enzyme–metal hybrid catalysts using Pd/lipase-Pluronic conjugates and the combination of immobilized lipase (Novozyme 435) and Pd/C as models. With reference to experimental data in previous studies, the Weisz–Prater parameter and efficiency factor of internal diffusion were calculated to evaluate the internal diffusion limitations in these catalysts. Thereafter, a kinetic model was developed and fitted to describe the proximity effect in hybrid catalysts. Results indicated that the enhanced catalytic efficiency of hybrid catalysts may arise from the decreased internal diffusion limitation, size effect of Pd clusters and proximity of the enzyme and metal active sites, which provides a theoretical foundation for the rational design of enzyme–metal hybrid catalysts.

关键词: enzyme–metal hybrid catalyst     internal diffusion     proximity effect     kinetic model    

Plant diversity reduces the effect of multiple heavy metal pollution on soil enzyme activities and microbial

Yang GAO, Chiyuan MIAO, Jun XIA, Liang MAO, Yafeng WANG, Pei ZHOU

《环境科学与工程前沿(英文)》 2012年 第6卷 第2期   页码 213-223 doi: 10.1007/s11783-011-0345-z

摘要: It is unclear whether certain plant species and plant diversity could reduce the impacts of multiple heavy metal pollution on soil microbial structure and soil enzyme activities. Random amplified polymorphic DNA (RAPD) was used to analyze the genetic diversity and microbial similarity in planted and unplanted soil under combined cadmium (Cd) and lead (Pb) pollution. A metal hyperaccumulator, , and a common plant, , were used in this research. The results showed that microorganism quantity in planted soil significantly increased, compared with that in unplanted soil with Cd and Pb pollution. The order of microbial community sensitivity in response to Cd and Pb stress was as follows: actinomycetes>bacteria>fungi. Respiration, phosphatase, urease and dehydrogenase activity were significantly inhibited due to Cd and Pb stress. Compared with unplanted soil, planted soils have frequently been reported to have higher rates of microbial activity due to the presence of additional surfaces for microbial colonization and organic compounds released by the plant roots. Two coexisting plants could increase microbe population and the activity of phosphatases, dehydrogenases and, in particular, ureases. Soil enzyme activity was higher in phytoremediated soil than in planted soil in this study. Heavy metal pollution decreased the richness of the soil microbial community, but plant diversity increased DNA sequence diversity and maintained DNA sequence diversity at high levels. The genetic polymorphism under heavy metal stress was higher in phytoremediated soil than in planted soil.

关键词: enzyme activity     soil DNA     microbial population     plant diversity     heavy metal    

Designer enzyme for green materials innovation: Lactate-polymerizing enzyme as a key catalyst

Seiichi Taguchi

《化学科学与工程前沿(英文)》 2017年 第11卷 第1期   页码 139-142 doi: 10.1007/s11705-017-1636-0

摘要: Establishment of the regeneratable whole-cell catalyst platform for the?production of biobased polymeric materials is a?typical topic of synthetic biology. In this commentary, discovery story of a “lactate-polymerizing enzyme” (LPE)?and LPE-based?achievements for creating a new variety of polyesters with incorporated unnatural monomers are presented. Besides the importance of microbial platform itself is discussed referring to the “ballooning”- .

关键词: synthetic biology     enzyme evolutionary engineering     polyhydroxyalkanoate    

Joint effects of Penta-BDE and heavy metals on

Baohua TANG, Lingyan ZHU, Qixing ZHOU

《环境科学与工程前沿(英文)》 2011年 第5卷 第1期   页码 99-110 doi: 10.1007/s11783-010-0260-8

摘要: The joint toxicity of Penta-BDE (Pe-BDE) and heavy metals including cadmium and copper on ( ) was evaluated on the basis of determining the 48 h survival, antioxidative enzyme responses, and lipid peroxidation. The response was classified as additive, greater than additive, or less than additive by comparing the measured “toxic units, TU” with one. Based on the survival of , less-than-additive interactions were found in most of mixtures treatments. This may be attributed to the different toxicity mechanism between Pe-BDE and metals. Cu and Cd played a greater role in toxicity than what Pe-BDE did. As for the superoxide dismutase (SOD) and catalase (CAT) activity, most response was less than additive. For the glutathione -transferases (GST) activity, most of the greater-than-additive responses were found in the Cu plus Pe-BDE treatments, but the additive responses occurred in Cd plus Pe-BDE treatments and binary metal treatments. For lipid peroxide levels, which were measured as malondialdehyde (MDA) levels, less-than-additive response occurred in the 50% Cd plus 50% Cu and ternary mixture treatments. Results suggested that Pe-BDE, Cd, and Cu could induce different patterns of antioxidant enzyme responses, such as antioxidant/prooxidant responses, depending on their capability to produce reactive oxygen species and antioxidant enzymes to detoxify them.

关键词: polybrominated diphenyl ethers (PBDEs)     heavy metal     mixture toxicity     toxic units (TUs)     antioxidant enzyme     lipid peroxidation    

Influence of glucose feeding on the ligninolytic enzyme production of the white-rot fungus Phanerochaete

ZHOU Xiaoyan, WEN Xianghua, FENG Yan

《环境科学与工程前沿(英文)》 2007年 第1卷 第1期   页码 89-94 doi: 10.1007/s11783-007-0017-1

摘要: The present work studied the influence of glucose feeding on the ligninolytic enzyme production of in a nitrogen-limited (C/N ratio is 56/8.8 mmol/L) medium. Several sets of shaking flask experiments were conducted. The results showed that 2 g/L glucose feeding on the first day of the culture (24 h after the inoculation) stimulated both fungal biomass growth and enzyme production. The manganese peroxidase (MnP) activity was 2.5 times greater than that produced in cultures without glucose feeding. Furthermore, the glucose feeding mode in fed-batch culture was also investigated. Compared to cultures with glucose feeding every 48 h, cultures with glucose feeding of 1.5 g/L (final concentration) every 24 h produced more enzymes. The peak and total yield of MnP activity were 2.7 and 3 times greater compared to the contrast culture, respectively, and the enzyme was kept stable for 4 days with an activity of over 200 U/L.

关键词: enzyme production     fed-batch culture     nitrogen-limited     inoculation     mmol/L    

Comments on “Determination of heterozygosity for avirulence/virulence loci through sexual hybridization

Ralf T. Voegele

《农业科学与工程前沿(英文)》 2017年 第4卷 第1期   页码 121-122 doi: 10.15302/J-FASE-2017142

Determination of heterozygosity for avirulence/virulence loci through sexual hybridization of

Yuan TIAN,Gangming ZHAN,Xia LU,Jie ZHAO,Lili HUANG,Zhensheng KANG

《农业科学与工程前沿(英文)》 2017年 第4卷 第1期   页码 48-58 doi: 10.15302/J-FASE-2016114

摘要: Wheat stripe rust caused by f. sp. is one of the most devastating diseases of wheat worldwide and resistant cultivars are vital for its management. Therefore, investigating the heterozygosity of the pathogen is important because of rapid virulence changes in isolates heterozygous for avirulence/virulence. An isolate of f. sp. was selfed on to determine the heterozygosity for avirulence/virulence loci. One hundred and twenty progeny isolates obtained from this selfing were phenotyped using 25 lines of wheat containing genes and genotyped with 96 simple sequencing repeat markers, with 51 pathotypes and 55 multi-locus genotypes being identified. All of these were avirulent on lines with , , , and and virulent on lines with , and , indicating that the parental isolate was homozygously avirulent or homozygously virulent for these loci. Segregation was found for wheat lines with , , , , , , , , , , , , , , , and . The 17 cultivars to which the was identified as heterozygous with respect to virulence/avirulence should not be given priority in breeding programs to obtain new resistant cultivars.

关键词: Puccinia striiformis f. sp. tritici     selfing     heterozygosity     virulence inheritance    

Detection of Escherichia coli in wastewater based on enzyme immunoassay

XI Haiyan, CAI Qiang, HE Miao, SHI Hanchang

《环境科学与工程前沿(英文)》 2007年 第1卷 第3期   页码 381-384 doi: 10.1007/s11783-007-0065-6

摘要: This research describes a fast detection method on the basis of enzyme-linked immunosorbent assay (ELISA) for in drainage of wastewater treatment plants. Optimized conditions such as the reaction format (sandwich or direct), the concentrations of diluted horse radish peroxidase (HRP)- conjugate, and anti-HPR antibody and pretreatment of were studied. Those results showed that the linear range of detection for was 10 cfu/mL– 6 × 10 cfu/mL. Compared with conventional methods, it is a convenient and sensitive detection method with low cost.

关键词: conventional     sandwich     pretreatment     enzyme-linked immunosorbent     detection    

Enzyme@bismuth-ellagic acid: a versatile platform for enzyme immobilization with enhanced acid-base stability

《化学科学与工程前沿(英文)》 2023年 第17卷 第6期   页码 784-794 doi: 10.1007/s11705-022-2278-4

摘要: In situ encapsulation is an effective way to synthesize enzyme@metal–organic framework biocatalysts; however, it is limited by the conditions of metal–organic framework synthesis and its acid-base stability. Herein, a biocatalytic platform with improved acid-base stability was constructed via a one-pot method using bismuth-ellagic acid as the carrier. Bismuth-ellagic acid is a green phenol-based metal–organic framework whose organic precursor is extracted from natural plants. After encapsulation, the stability, especially the acid-base stability, of amyloglucosidases@bismuth-ellagic acid was enhanced, which remained stable over a wide pH range (2–12) and achieved multiple recycling. By selecting a suitable buffer, bismuth-ellagic acid can encapsulate different types of enzymes and enable interactions between the encapsulated enzymes and cofactors, as well as between multiple enzymes. The green precursor, simple and convenient preparation process provided a versatile strategy for enzymes encapsulation.

关键词: bismuth-ellagic acid     in situ encapsulation     enzyme@MOF biocomposites    

Soil enzyme activities and their indication for fertility of urban forest soil

SHAN Qihua, YU Yuanchun, ZHANG Jinchi, YU Jian

《环境科学与工程前沿(英文)》 2008年 第2卷 第2期   页码 218-223 doi: 10.1007/s11783-008-0037-5

摘要: To reveal the biological characteristics of urban forest soil and the effects of soil enzyme on soil fertility as well as the correlation between physicochemical properties and enzyme activities, 44 urban forest soil profiles in Nanjing were investigated. Basic soil physicochemical properties and enzyme activities were analyzed in the laboratory. Hydrogen peroxidase, dehydrogenase, alkaline phosphatase, and cellulase were determined by potassium permanganate titration, TTC (CHN·Cl) colorimetry, phenyl phosphate dinatrium colorimetry, and anthrone colorimetry, respectively. The result showed that soil pH, organic carbon (C), and total nitrogen (N) had great effects on hydrogen peroxidase, dehydrogenase, and alkaline phosphatase activities in 0–20 cm thick soil. However, pH only had great effect on hydrogen peroxidase, dehydrogenase, and alkaline phosphatase activities in 20–40 cm thick soil. Hydrogen peroxidase, dehydrogenase, and alkaline phosphatase were important biological indicators for the fertility of urban forest soil. Both in 0–20 cm and 20–40 cm soil, soil enzyme system (hydrogen peroxidase, dehydrogenase, alkaline phosphatase, and cellulase) had a close relationship with a combination of physicochemical indicators (pH, organic C, total N, available K, available P, cation exchange capacity (CEC), and microbial biomass carbon (C)). The more soil enzyme activities there were, the higher the fertility of urban forest soil.

Effect of fiber hybridization on energy absorption and synergy in concrete

Ahmadreza RAMEZANI, Mohammad Reza ESFAHANI

《结构与土木工程前沿(英文)》 2019年 第13卷 第6期   页码 1338-1349 doi: 10.1007/s17009-019-0558-2

摘要: In the present study, steel and polypropylene (PP) fibers have been utilized with the intent of obtaining hybrid fiber-reinforced concrete (HFRC) with desirable mechanical properties. An attempt has been made to scrutinize the properties of HFRC with the main concentration being on energy absorption characteristics of concrete and the efficacy of fiber hybridization in producing synergy. Accordingly, a total of 180 specimens, representing 20 different mixtures have been cast and evaluated through compressive, split tensile, and flexural tests. The relevant flexural toughness of the specimens was calculated using ASTM C1018, ASTM C1609, JSCE, and PCS methods, and the effectiveness of these methods was evaluated based on the experimental results. It was observed that steel fibers are more effective in the improvement of flexural toughness in the presence of PP fibers. Furthermore, synergy associated with the combination of fibers at different stages of deflection of the beam specimens was observed and analyzed.

关键词: hybrid fiber-reinforced concrete     synergy     toughness     steel fibers     polypropylene fibers    

Cofactor engineering in cyanobacteria to overcome imbalance between NADPH and NADH: A mini review

Jongmoon Park,Yunnam Choi

《化学科学与工程前沿(英文)》 2017年 第11卷 第1期   页码 66-71 doi: 10.1007/s11705-016-1591-1

摘要: Cyanobacteria can produce useful renewable fuels and high-value chemicals using sunlight and atmospheric carbon dioxide by photosynthesis. Genetic manipulation has increased the variety of chemicals that cyanobacteria can produce. However, their uniquely abundant NADPH-pool, in other words insufficient supply of NADH, tends to limit their production yields in case of utilizing NADH-dependent enzyme, which is quite common in heterotrophic microbes. To overcome this cofactor imbalance and enhance cyanobacterial fuel and chemical production, various approaches for cofactor engineering have been employed. In this review, we focus on three approaches: (1) utilization of NADPH-dependent enzymes, (2) increasing NADH production, and (3) changing cofactor specificity of NADH-dependent enzymes from NADH to NADPH.

关键词: NADH-dependent enzyme     NADPH-dependent enzyme     transhydrogenase     site-directed mutagenesis     enzyme engineering    

Degradation of 4-aminophenol by hydrogen peroxide oxidation using enzyme from Serratia marcescens as

SUN Min, YOU Yahua, DENG Shengsong, GAO Wenxia, YAO Risheng

《环境科学与工程前沿(英文)》 2007年 第1卷 第1期   页码 95-98 doi: 10.1007/s11783-007-0018-0

摘要: AB 90027 as catalyst. The effecting factors during degradation and the degrading mechanism were studied. Also, the location of the enzyme in the cell, which could catalyze the degradation of 4-aminophenol, was analyzed. The results showed that to degrade 50 mL of 4-aminophenol whose concentration was 500 mg/L, the optimal conditions were: volume of HO = 3 mL, temperature = 40 60?C and pH = 9 10. In the degradation process, 4-aminophenol was first converted to benzoquinone and NH, then organic acids including maleic acid, fumaleic acid, and oxalic acid were formed, and then finally CO and HO were generated as final products. The enzyme that could catalyze the degradation of 4-aminophenol was mainly extracellular enzyme.

关键词: degradation process     temperature     effecting     degradation     volume    

Microcystin-LR detection based on indirect competitive enzyme-linked immunosorbent assay

SHENG Jianwu, HE Miao, YU Shaoqing, SHI Hanchang, QIAN Yi

《环境科学与工程前沿(英文)》 2007年 第1卷 第3期   页码 329-333 doi: 10.1007/s11783-007-0056-7

摘要: Microcystins (MCs) are a group of closely related toxic cyclic heptapeptides produced by common cyanobacteria, which cause lots of accidents and threatens human health. In this paper, an indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) was established and used to detect microcystin-LR (MC-LR) in drinking and surface waters. The concentration of coating antigen was 5 ?g/mL, the dilution of monoclonal antibody MC10E7 was 1:3 000, the dilution of enzyme tracer (goat anti-mouse IgG-peroxidase) was 1:3 000, the standard concentration of MC-LR ranged from 0.001 μg/L to 30 μg/L, and o-phenylenediamine was used as substrate. The assay showed high relativity with high performance liquid chromatography (HPLC) with a correlation coefficient of more than 99%. The relative standard deviation was less than 10%, the detection limit was achieved down to 0.01 μg/L and up to 5.1 μg/L. The quantitative detection range was from 0.03 μg/L to 3 μg/L, and the antibody had high specificity for [4-arginine] microcystins. It performed well in spite of the influence of the real samples.

关键词: o-phenylenediamine     4-arginine     ic-ELISA     substrate     chromatography    

标题 作者 时间 类型 操作

Self-assembly of metal-cholesterol oxidase hybrid nanostructures and application in bioconversion of

Yu Xin, Qiuyue Gao, Yu Gu, Mengyao Hao, Guangming Fan, Liang Zhang

期刊论文

Diffusion process in enzymemetal hybrid catalysts

期刊论文

Plant diversity reduces the effect of multiple heavy metal pollution on soil enzyme activities and microbial

Yang GAO, Chiyuan MIAO, Jun XIA, Liang MAO, Yafeng WANG, Pei ZHOU

期刊论文

Designer enzyme for green materials innovation: Lactate-polymerizing enzyme as a key catalyst

Seiichi Taguchi

期刊论文

Joint effects of Penta-BDE and heavy metals on

Baohua TANG, Lingyan ZHU, Qixing ZHOU

期刊论文

Influence of glucose feeding on the ligninolytic enzyme production of the white-rot fungus Phanerochaete

ZHOU Xiaoyan, WEN Xianghua, FENG Yan

期刊论文

Comments on “Determination of heterozygosity for avirulence/virulence loci through sexual hybridization

Ralf T. Voegele

期刊论文

Determination of heterozygosity for avirulence/virulence loci through sexual hybridization of

Yuan TIAN,Gangming ZHAN,Xia LU,Jie ZHAO,Lili HUANG,Zhensheng KANG

期刊论文

Detection of Escherichia coli in wastewater based on enzyme immunoassay

XI Haiyan, CAI Qiang, HE Miao, SHI Hanchang

期刊论文

Enzyme@bismuth-ellagic acid: a versatile platform for enzyme immobilization with enhanced acid-base stability

期刊论文

Soil enzyme activities and their indication for fertility of urban forest soil

SHAN Qihua, YU Yuanchun, ZHANG Jinchi, YU Jian

期刊论文

Effect of fiber hybridization on energy absorption and synergy in concrete

Ahmadreza RAMEZANI, Mohammad Reza ESFAHANI

期刊论文

Cofactor engineering in cyanobacteria to overcome imbalance between NADPH and NADH: A mini review

Jongmoon Park,Yunnam Choi

期刊论文

Degradation of 4-aminophenol by hydrogen peroxide oxidation using enzyme from Serratia marcescens as

SUN Min, YOU Yahua, DENG Shengsong, GAO Wenxia, YAO Risheng

期刊论文

Microcystin-LR detection based on indirect competitive enzyme-linked immunosorbent assay

SHENG Jianwu, HE Miao, YU Shaoqing, SHI Hanchang, QIAN Yi

期刊论文